3.4.64 \(\int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [364]

Optimal. Leaf size=160 \[ \frac {\sqrt {a} (5 B+6 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 B+6 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/8*(5*B+6*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+1/8*a*(5*B+6*C)*sin(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)+1/12*a*(5*B+6*C)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*a*B*cos(d*x+c)^2*sin(d*x+c
)/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {4157, 4100, 3890, 3859, 209} \begin {gather*} \frac {\sqrt {a} (5 B+6 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 d}+\frac {a (5 B+6 C) \sin (c+d x)}{8 d \sqrt {a \sec (c+d x)+a}}+\frac {a (5 B+6 C) \sin (c+d x) \cos (c+d x)}{12 d \sqrt {a \sec (c+d x)+a}}+\frac {a B \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a]*(5*B + 6*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a*(5*B + 6*C)*Sin[c + d
*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + (a*(5*B + 6*C)*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]
) + (a*B*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} (B+C \sec (c+d x)) \, dx\\ &=\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{6} (5 B+6 C) \int \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} (5 B+6 C) \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (5 B+6 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {1}{16} (5 B+6 C) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (5 B+6 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {(a (5 B+6 C)) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac {\sqrt {a} (5 B+6 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 B+6 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a (5 B+6 C) \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.19, size = 70, normalized size = 0.44 \begin {gather*} \frac {2 \left (C \, _2F_1\left (\frac {1}{2},3;\frac {3}{2};1-\sec (c+d x)\right )+B \, _2F_1\left (\frac {1}{2},4;\frac {3}{2};1-\sec (c+d x)\right )\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(C*Hypergeometric2F1[1/2, 3, 3/2, 1 - Sec[c + d*x]] + B*Hypergeometric2F1[1/2, 4, 3/2, 1 - Sec[c + d*x]])*S
qrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(579\) vs. \(2(140)=280\).
time = 24.85, size = 580, normalized size = 3.62

method result size
default \(-\frac {\left (15 B \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+18 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+30 B \sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )+36 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}+15 B \sqrt {2}\, \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+18 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+64 B \left (\cos ^{6}\left (d x +c \right )\right )+16 B \left (\cos ^{5}\left (d x +c \right )\right )+96 C \left (\cos ^{5}\left (d x +c \right )\right )+40 B \left (\cos ^{4}\left (d x +c \right )\right )+48 C \left (\cos ^{4}\left (d x +c \right )\right )-120 B \left (\cos ^{3}\left (d x +c \right )\right )-144 C \left (\cos ^{3}\left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{192 d \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}\) \(580\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/192/d*(15*B*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))+18*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+30*B*2^(1/2)
*cos(d*x+c)*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*s
in(d*x+c)/cos(d*x+c)*2^(1/2))+36*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2)+15*B*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x
+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+18*C*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x
+c)*2^(1/2))*sin(d*x+c)+64*B*cos(d*x+c)^6+16*B*cos(d*x+c)^5+96*C*cos(d*x+c)^5+40*B*cos(d*x+c)^4+48*C*cos(d*x+c
)^4-120*B*cos(d*x+c)^3-144*C*cos(d*x+c)^3)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 2981 vs. \(2 (140) = 280\).
time = 0.79, size = 2981, normalized size = 18.63 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/96*((4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
 + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x
+ 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*cos
(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) + 1)
- arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan
2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) +
 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arctan2
((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
)^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1)))*B + 6*(2*(cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(
2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c))
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + ...

________________________________________________________________________________________

Fricas [A]
time = 2.45, size = 346, normalized size = 2.16 \begin {gather*} \left [\frac {3 \, {\left ({\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 6 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, B \cos \left (d x + c\right )^{3} + 2 \, {\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right ) + 5 \, B + 6 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, B \cos \left (d x + c\right )^{3} + 2 \, {\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B + 6 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/48*(3*((5*B + 6*C)*cos(d*x + c) + 5*B + 6*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*B*cos(d*x +
 c)^3 + 2*(5*B + 6*C)*cos(d*x + c)^2 + 3*(5*B + 6*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin
(d*x + c))/(d*cos(d*x + c) + d), -1/24*(3*((5*B + 6*C)*cos(d*x + c) + 5*B + 6*C)*sqrt(a)*arctan(sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8*B*cos(d*x + c)^3 + 2*(5*B + 6*C)*cos(d*x +
 c)^2 + 3*(5*B + 6*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)
]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 889 vs. \(2 (140) = 280\).
time = 1.85, size = 889, normalized size = 5.56 \begin {gather*} -\frac {3 \, {\left (5 \, B \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 6 \, C \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - 3 \, {\left (5 \, B \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 6 \, C \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) + \frac {4 \, {\left (63 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 30 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} C \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 369 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} B \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 66 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} C \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 1638 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} B \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 756 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} C \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 1074 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} B \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 732 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} C \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 171 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 138 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} C \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 13 \, \sqrt {2} B \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 6 \, \sqrt {2} C \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{3}}}{48 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/48*(3*(5*B*sqrt(-a)*sgn(cos(d*x + c)) + 6*C*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(5*B*sqrt(-a)*sgn(cos(d*x + c)) + 6*C*s
qrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a
*(2*sqrt(2) - 3))) + 4*(63*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*
sqrt(-a)*a*sgn(cos(d*x + c)) - 30*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^10*C*sqrt(-a)*a*sgn(cos(d*x + c)) - 369*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c
)^2 + a))^8*B*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 66*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x
 + 1/2*c)^2 + a))^8*C*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 1638*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t
an(1/2*d*x + 1/2*c)^2 + a))^6*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 756*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) -
sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 1074*sqrt(2)*(sqrt(-a)*tan(1/2*d*x +
 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 732*sqrt(2)*(sqrt(-a)*tan(
1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 171*sqrt(2)*(sqrt
(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 138*sqrt
(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt(-a)*a^5*sgn(cos(d*x + c)) -
 13*sqrt(2)*B*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 6*sqrt(2)*C*sqrt(-a)*a^6*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*
d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x
 + 1/2*c)^2 + a))^2*a + a^2)^3)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^4\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^4*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________